查看原文
其他

Seaborn从零开始学习教程(一)

xiaoyu Python数据科学 2019-04-22
(点击上方蓝色,快速关注)


最近在做几个项目的数据分析,每次用到seaborn进行可视化绘图的时候总是忘记具体操作。虽然seaborn的官方网站已经详细的介绍了使用方法,但是毕竟是英文,而且每次都上网查找不是很方便,还不如自己重新来一遍。因此博主想从零开始将seaborn学习一遍,做一个总结,也希望供大家使用参考。


Seaborn简介

seabornmatplotlib一样,也是Python进行数据可视化分析的重要第三方包。但 seaborn 是在 matplotlib 的基础上进行了更高级的API封装,使得作图更加容易,图形更加漂亮。


博主并不认为seaborn可以替代matplotlib。虽然 seaborn 可以满足大部分情况下的数据分析需求,但是针对一些特殊情况,还是需要用到 matplotlib 的。换句话说,matplotlib 更加灵活,可定制化,而 seaborn 像是更高级的封装,使用方便快捷。

应该把seaborn视为matplotlib的补充,而不是替代物。

Seaborn学习内容

seaborn的学习内容主要包含以下几个部分:

  1. 风格管理

  • 绘图风格设置

  • 颜色风格设置

  • 绘图方法

    • 数据集的分布可视化

    • 分类数据可视化

    • 线性关系可视化

  • 结构网格

    • 数据识别网格绘图


    本次将主要介绍风格管理的使用。

    风格管理 - 绘图风格设置

    除了各种绘图方式外,图形的美观程度可能是我们最关心的了。将它放到第一部分,因为风格设置是一些通用性的操作,对于各种绘图方法都适用。

    让我们先看一个例子。

    %matplotlib inline
    import numpy as np
    import matplotlib as mpl
    import matplotlib.pyplot as plt
    import seaborn as sns
    np.random.seed(sum(map(ord, "aesthetics")))

    我们定义了一个简单的方程来绘制一些偏置的正弦波,用来帮助我们查看不同的图画风格是什么样子的。

    def sinplot(flip=1):
       x = np.linspace(0, 14, 100)
       for i in range(1, 7):
           plt.plot(x, np.sin(x + i * .5) * (7 - i) * flip)

    matplotlib默认参数下绘制结果是这样的:

    sinplot()

    转换为seaborn默认绘图,可以简单的用set()方法。

    sns.set()
    sinplot()


    Seaborn 将 matplotlib 的参数划分为两个独立的组合。第一组是设置绘图的外观风格的,第二组主要将绘图的各种元素按比例缩放的,以至可以嵌入到不同的背景环境中。

    操控这些参数的接口主要有两对方法:

    • 控制风格:axes_style()set_style()

    • 缩放绘图:plotting_context()set_context()

    每对方法中的第一个方法(axes_style()plotting_context())会返回一组字典参数,而第二个方法(set_style()set_context())会设置matplotlib的默认参数。

    Seaborn的五种绘图风格

    有五种seaborn的风格,它们分别是:darkgridwhitegriddarkwhiteticks。它们各自适合不同的应用和个人喜好。默认的主题是darkgrid

    sns.set_style("whitegrid")
    data = np.random.normal(size=(20, 6)) + np.arange(6) / 2
    sns.boxplot(data=data);


    sns.set_style("dark")
    sinplot()


    sns.set_style("white")
    sinplot()


    sns.set_style("ticks")
    sinplot()


    移除轴脊柱

    white 和 ticks两个风格都能够移除顶部和右侧的不必要的轴脊柱。通过matplotlib参数是做不到这一点的,但是你可以使用seaborndespine()方法来移除它们:

    sinplot()
    sns.despine()


    一些绘图也可以针对数据将轴脊柱进行偏置,当然也是通过调用despine()方法来完成。而当刻度没有完全覆盖整个轴的范围时,trim参数可以用来限制已有脊柱的范围。

    f, ax = plt.subplots()
    sns.violinplot(data=data)
    sns.despine(offset=10, trim=True);


    你也可以通过despine()控制哪个脊柱将被移除。

    sns.set_style("whitegrid")
    sns.boxplot(data=data, palette="deep")
    sns.despine(left=True)


    临时设置绘图风格

    虽然来回切换风格很容易,但是你也可以在一个with语句中使用axes_style()方法来临时的设置绘图参数。这也允许你用不同风格的轴来绘图:

    with sns.axes_style("darkgrid"):
       plt.subplot(211)
       sinplot()
    plt.subplot(212)
    sinplot(-1)


    覆盖seaborn风格元素

    如果你想定制化seaborn风格,你可以将一个字典参数传递给axes_style()set_style()的参数rc。而且你只能通过这个方法来覆盖风格定义中的部分参数。

    如果你想要看看这些参数都是些什么,可以调用这个方法,且无参数,这将会返回下面的设置:

    sns.axes_style()
    {'axes.axisbelow': True,
    'axes.edgecolor': '.8',
    'axes.facecolor': 'white',
    'axes.grid': True,
    'axes.labelcolor': '.15',
    'axes.linewidth': 1.0,
    'figure.facecolor': 'white',
    'font.family': [u'sans-serif'],
    'font.sans-serif': [u'Arial',
     u'DejaVu Sans',
     u'Liberation Sans',
     u'Bitstream Vera Sans',
     u'sans-serif'],
    'grid.color': '.8',
    'grid.linestyle': u'-',
    'image.cmap': u'rocket',
    'legend.frameon': False,
    'legend.numpoints': 1,
    'legend.scatterpoints': 1,
    'lines.solid_capstyle': u'round',
    'text.color': '.15',
    'xtick.color': '.15',
    'xtick.direction': u'out',
    'xtick.major.size': 0.0,
    'xtick.minor.size': 0.0,
    'ytick.color': '.15',
    'ytick.direction': u'out',
    'ytick.major.size': 0.0,
    'ytick.minor.size': 0.0}

    然后,你可以设置这些参数的不同版本了。

    sns.set_style("darkgrid", {"axes.facecolor": ".9"})
    sinplot()


    绘图元素比例缩放

    有一套的参数可以控制绘图元素的比例。
    首先,让我们通过
    set()重置默认的参数:

    sns.set()

    有四个预置的环境,按大小从小到大排列分别为:papernotebooktalkposter。其中,notebook是默认的。

    sns.set_context("paper")
    sinplot()



    sns.set_context("talk")
    sinplot()



    sns.set_context("poster")
    sinplot()



    你可以通过使用这些名字中的一个调用set_context()来设置参数,并且你可以通过提供一个字典参数值来覆盖参数。当改变环境时,你也可以独立的去缩放字体元素的大小。


    sns.set_context("notebook", font_scale=1.5, rc={"lines.linewidth": 2.5})
    sinplot()



    同样的,你可以通过嵌入with语句临时的控制绘图的比例。



    总结


    • 介绍了Seaborn的5中绘图风格

    • 移除轴脊柱

    • 临时设置绘图风格

    • 覆盖Seaborn风格元素

    • 绘图元素比例缩放


    下一节将会介绍颜色风格的使用。


    往期精彩回顾



    发送 学习资料,获取经典书籍电子书

    长按二维码 关注Python数据科学

      您可能也对以下帖子感兴趣

      文章有问题?点此查看未经处理的缓存